3  n-Qubit Systems

Moving beyond 2 qubits unlocks the full richness of quantum entanglement. With 3 or more qubits, we encounter genuinely different classes of entanglement—states that cannot be converted to each other using local operations.

3.1 Tensor Products for n Qubits

3.1.1 The n-Qubit Hilbert Space

An \(n\)-qubit system lives in a Hilbert space of dimension \(2^n\).

Computational basis: \(\{|b_1b_2\cdots b_n\rangle : b_i \in \{0,1\}\}\)

For 3 qubits: \(|000\rangle, |001\rangle, |010\rangle, |011\rangle, |100\rangle, |101\rangle, |110\rangle, |111\rangle\) (8 states)

For \(n\) qubits: \(2^n\) basis states

3.1.2 General n-Qubit State

\[ |\psi\rangle = \sum_{b_1,\ldots,b_n \in \{0,1\}} c_{b_1\cdots b_n} |b_1\cdots b_n\rangle \]

with normalization: \(\sum_{b_1,\ldots,b_n} |c_{b_1\cdots b_n}|^2 = 1\)

Note: The number of complex amplitudes grows exponentially: \(2^n\) complex numbers!

  • 10 qubits: 1,024 amplitudes
  • 20 qubits: 1,048,576 amplitudes
  • 50 qubits: \(\sim 10^{15}\) amplitudes (more than can be stored classically!)

This exponential growth is both the power and the challenge of quantum computing.

3.2 GHZ States: Maximal Multipartite Entanglement

3.2.1 Definition

The GHZ state (Greenberger-Horne-Zeilinger) for \(n\) qubits is:

\[ |\text{GHZ}_n\rangle = \frac{1}{\sqrt{2}}(|0\rangle^{\otimes n} + |1\rangle^{\otimes n}) = \frac{1}{\sqrt{2}}(|00\cdots0\rangle + |11\cdots1\rangle) \]

Examples: - \(n=2\): \(|\text{GHZ}_2\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = |\Phi^+\rangle\) (Bell state) - \(n=3\): \(|\text{GHZ}_3\rangle = \frac{1}{\sqrt{2}}(|000\rangle + |111\rangle)\) - \(n=4\): \(|\text{GHZ}_4\rangle = \frac{1}{\sqrt{2}}(|0000\rangle + |1111\rangle)\)

3.2.2 Properties of GHZ States

  1. Perfectly correlated: Measuring any qubit in the Z-basis gives 0 or 1, and all other qubits will have the same value.

  2. Fragile: Measuring even one qubit completely destroys the multipartite entanglement, leaving a product state.

  3. Maximal bipartite entanglement: For any bipartition (splitting qubits into two groups), the entanglement entropy is maximal.

3.2.3 GHZ Correlations

For \(|\text{GHZ}_3\rangle = \frac{1}{\sqrt{2}}(|000\rangle + |111\rangle)\):

Measuring all qubits in Z-basis: - \(P(000) = \frac{1}{2}\) - all measure 0 - \(P(111) = \frac{1}{2}\) - all measure 1 - \(P(\text{any other outcome}) = 0\) - impossible!

This perfect 3-way correlation has no classical analogue.

3.2.4 Entanglement Entropy of GHZ

For a bipartition \(A|B\) where \(A\) has \(k\) qubits and \(B\) has \(n-k\) qubits:

\[ S_{A|B} = 1 \text{ bit} \]

regardless of how we partition! (as long as both groups are non-empty)

Proof: GHZ Has Maximal Bipartite Entropy

Claim: For \(|\text{GHZ}_n\rangle\), any bipartition yields \(S = 1\) bit.

Proof:

Consider partition into group A (first \(k\) qubits) and group B (remaining \(n-k\) qubits).

The GHZ state can be written:

\[ |\text{GHZ}_n\rangle = \frac{1}{\sqrt{2}}|0\rangle^{\otimes k}_A |0\rangle^{\otimes (n-k)}_B + \frac{1}{\sqrt{2}}|1\rangle^{\otimes k}_A |1\rangle^{\otimes (n-k)}_B \]

This is in Schmidt form with coefficients \(\lambda_1 = \lambda_2 = \frac{1}{\sqrt{2}}\).

Therefore:

\[ S = -\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{2}\log_2\frac{1}{2} = 1 \text{ bit} \quad \square \]

3.3 W States: Robust Entanglement

3.3.1 Definition

The W state for \(n\) qubits is an equal superposition of all basis states with exactly one qubit in \(|1\rangle\):

\[ |W_n\rangle = \frac{1}{\sqrt{n}}(|10\cdots0\rangle + |01\cdots0\rangle + \cdots + |0\cdots01\rangle) \]

Examples: - \(n=3\): \(|W_3\rangle = \frac{1}{\sqrt{3}}(|100\rangle + |010\rangle + |001\rangle)\) - \(n=4\): \(|W_4\rangle = \frac{1}{2}(|1000\rangle + |0100\rangle + |0010\rangle + |0001\rangle)\)

3.3.2 Properties of W States

  1. Robust: If you measure one qubit and get 0, the remaining qubits are still entangled in a W state with \(n-1\) qubits.

  2. Partial bipartite entanglement: For bipartition \(1|23\cdots n\), the entanglement is less than maximal.

  3. Symmetric: All qubits play equivalent roles (state is unchanged by permuting qubits).

3.3.3 W State Resilience

For \(|W_3\rangle = \frac{1}{\sqrt{3}}(|100\rangle + |010\rangle + |001\rangle)\):

Measuring qubit 1 in Z-basis:

  • Outcome 1 (probability \(\frac{1}{3}\)):
    • State collapses to \(|100\rangle\) (separable)
  • Outcome 0 (probability \(\frac{2}{3}\)):
    • State collapses to \(\frac{1}{\sqrt{2}}(|010\rangle + |001\rangle) = |0\rangle \otimes \frac{1}{\sqrt{2}}(|10\rangle + |01\rangle)\)
    • Qubits 2 and 3 are still entangled in a Bell state!

Key difference from GHZ: W states preserve entanglement when losing qubits.

3.3.4 Entanglement Entropy of W

For \(|W_3\rangle\) with bipartition \(1|23\):

The state can be written:

\[ |W_3\rangle = \frac{1}{\sqrt{3}}|1\rangle|00\rangle + \frac{\sqrt{2}}{\sqrt{3}}|0\rangle \cdot \frac{1}{\sqrt{2}}(|10\rangle + |01\rangle) \]

Schmidt coefficients: \(\lambda_1 = \frac{1}{\sqrt{3}}, \lambda_2 = \sqrt{\frac{2}{3}}\)

Entropy:

\[ S = -\frac{1}{3}\log_2\frac{1}{3} - \frac{2}{3}\log_2\frac{2}{3} \approx 0.918 \text{ bits} \]

This is less than 1 bit - W states are not maximally entangled for bipartitions!

3.4 GHZ vs W: Different Entanglement Classes

GHZ and W states represent fundamentally different types of entanglement.

3.4.1 LOCC Equivalence

Two states are LOCC equivalent (Local Operations and Classical Communication) if one can be transformed into the other using: - Local quantum operations on individual qubits - Classical communication between parties

Theorem: GHZ and W Are LOCC-Inequivalent

For \(n \geq 3\) qubits, GHZ and W states belong to different entanglement classes. You cannot convert:

\[ |\text{GHZ}_n\rangle \not\xrightarrow{\text{LOCC}} |W_n\rangle \]

\[ |W_n\rangle \not\xrightarrow{\text{LOCC}} |\text{GHZ}_n\rangle \]

These represent genuinely different types of multipartite entanglement.

Physical interpretation: - GHZ: Fragile, maximal correlations, “all-or-nothing” entanglement - W: Robust, partial correlations, “distributed” entanglement

3.4.2 Summary of Differences

Property GHZ State W State
Form \(\frac{1}{\sqrt{2}}(|00\cdots0\rangle + |11\cdots1\rangle)\) \(\frac{1}{\sqrt{n}}\sum_i |0\cdots010\cdots0\rangle_i\)
Bipartite entropy \(S = 1\) (maximal) \(S < 1\) (sub-maximal)
Robustness Fragile to loss Robust to qubit loss
Correlations Perfect all-way Partial pairwise
LOCC class Distinct Distinct

3.5 Multipartite Entanglement: Beyond 2 Parties

3.5.1 Genuine Multipartite Entanglement

A state has genuine multipartite entanglement if it is entangled across all possible bipartitions.

Example: \(|\text{GHZ}_3\rangle\) is genuinely tripartite entangled: - Bipartition \(1|23\): entangled ✓ - Bipartition \(2|13\): entangled ✓ - Bipartition \(3|12\): entangled ✓

3.5.2 Biseparable States

A state is biseparable if it can be written as a mixture of states that are separable across some bipartition.

Example: \(|\psi\rangle = |0\rangle_1 \otimes |\Phi^+\rangle_{23}\) is biseparable (qubit 1 is separable from qubits 2-3).

This has entanglement but not genuine tripartite entanglement.

3.6 Measuring n-Qubit States

3.6.1 Partial Measurements

When measuring \(k\) qubits of an \(n\)-qubit state, the remaining \(n-k\) qubits collapse to a state determined by the measurement outcome.

General formula: For state \(|\psi\rangle = \sum_{i,j} c_{ij}|i\rangle_A|j\rangle_B\) where \(A\) represents the measured qubits and \(B\) the unmeasured:

Measuring \(A\) and getting outcome \(i\):

\[ |\psi\rangle \xrightarrow{\text{measure } A=i} |i\rangle_A \otimes \frac{1}{\sqrt{P(i)}}\sum_j c_{ij}|j\rangle_B \]

where \(P(i) = \sum_j |c_{ij}|^2\).

3.6.2 Example: Measuring GHZ\(_3\)

Start with: \(|\text{GHZ}_3\rangle = \frac{1}{\sqrt{2}}(|000\rangle + |111\rangle)\)

Measure qubit 1 in Z-basis:

  • Outcome 0 (probability \(\frac{1}{2}\)): \[ |\text{GHZ}_3\rangle \to |0\rangle_1 \otimes |00\rangle_{23} \] Qubits 2 and 3 are now in a product state \(|00\rangle\) (no entanglement!)

  • Outcome 1 (probability \(\frac{1}{2}\)): \[ |\text{GHZ}_3\rangle \to |1\rangle_1 \otimes |11\rangle_{23} \] Again, qubits 2 and 3 are in a product state \(|11\rangle\).

Key observation: GHZ entanglement is completely destroyed by measuring a single qubit!

3.6.3 Example: Measuring W\(_3\)

Start with: \(|W_3\rangle = \frac{1}{\sqrt{3}}(|100\rangle + |010\rangle + |001\rangle)\)

Measure qubit 1 in Z-basis:

  • Outcome 0 (probability \(\frac{2}{3}\)): \[ |W_3\rangle \to |0\rangle_1 \otimes \frac{1}{\sqrt{2}}(|10\rangle + |01\rangle)_{23} = |0\rangle_1 \otimes |\Psi^+\rangle_{23} \] Qubits 2 and 3 are in a Bell state (still entangled!)

  • Outcome 1 (probability \(\frac{1}{3}\)): \[ |W_3\rangle \to |1\rangle_1 \otimes |00\rangle_{23} \] Product state (no entanglement).

Key observation: W entanglement survives the loss of one qubit (with probability \(\frac{2}{3}\)).

3.7 Tensor Network Visualization

For large \(n\)-qubit states, we can use tensor network diagrams to visualize entanglement structure.

3.7.1 Product State

 |0⟩ —— |0⟩ —— |0⟩ —— |0⟩

No connections → no entanglement.

3.7.2 GHZ State

       ╱─────╲
      ╱       ╲
 |ψ⟩ ●─────────●
      ╲       ╱
       ╲─────╱

Central node connected to all qubits → maximal multipartite entanglement.

3.7.3 W State

 |ψ⟩ ───┬───┬───┬───
        │   │   │
       q1  q2  q3  q4

Distributed structure → robust, partial entanglement.

(Note: These are simplified diagrams. Full tensor networks are more complex.)

3.8 Computational Complexity

3.8.1 State Vector Simulation

Classical simulation of \(n\)-qubit states requires: - Memory: \(O(2^n)\) complex numbers - Operations: \(O(2^n)\) per gate

Limitations: - ~45 qubits: Maximum on world’s best supercomputers (\(\sim 35\) TB RAM) - 50+ qubits: Classically intractable to simulate in general

This is where quantum computers achieve advantage!

3.8.2 Tensor Network Methods

For certain states (e.g., matrix product states), we can simulate efficiently using tensor networks: - Memory: \(O(n \chi^2)\) where \(\chi\) is bond dimension - Works for: 1D systems, weakly entangled states, ground states of local Hamiltonians

Limitation: Highly entangled states (like GHZ, W) require exponential resources even for tensor networks.

3.9 Creating n-Qubit States in QPL

In the Quantum Process Language, you can create GHZ and W states directly:

from qpl import QPLProgram

program = QPLProgram("n-Qubit Entanglement")

# Create 4 qubits
q0, q1, q2, q3 = [program.create_system() for _ in range(4)]

# GHZ state (default)
ghz4 = program.entangle(q0, q1, q2, q3)
print(f"GHZ entropy: {ghz4.entanglement_entropy:.3f}")  # 1.000

# W state
w4 = program.entangle(q0, q1, q2, q3, state_type="w")
print(f"W entropy: {w4.entanglement_entropy:.3f}")  # < 1.000

This relations-first approach treats entanglement as a primitive operation, not a derived concept!

3.10 Summary

In this chapter, you learned:

✅ n-qubit systems live in \(2^n\)-dimensional Hilbert spaces ✅ GHZ states: maximal, fragile, all-or-nothing entanglement ✅ W states: robust, partial, distributed entanglement ✅ GHZ and W are LOCC-inequivalent (different entanglement classes) ✅ Genuine multipartite entanglement involves all bipartitions ✅ Partial measurements affect entanglement differently for GHZ vs W ✅ Classical simulation becomes intractable beyond ~45 qubits

Part I Complete! You now have the quantum foundations needed to understand MBQC and QPL.

3.11 Exercises

3.11.1 Exercise 3.1: GHZ State Verification

For \(|\text{GHZ}_4\rangle = \frac{1}{\sqrt{2}}(|0000\rangle + |1111\rangle)\):

(a) Calculate the probability of measuring outcome \(|0101\rangle\) in the Z-basis.

(b) If you measure qubits 1 and 2 and get outcomes 0 and 1 respectively, what is the state of qubits 3 and 4?

3.11.2 Exercise 3.2: W State Properties

For \(|W_4\rangle = \frac{1}{2}(|1000\rangle + |0100\rangle + |0010\rangle + |0001\rangle)\):

(a) Calculate \(P(1000)\) when all qubits are measured in the Z-basis.

(b) After measuring qubit 1 and getting 0, prove that qubits 2, 3, 4 are in state \(|W_3\rangle\).

3.11.3 Exercise 3.3: Entanglement Entropy Calculation

Calculate the bipartite entanglement entropy for \(|W_3\rangle\) with partition \(12|3\) (qubits 1-2 vs qubit 3).

Hint: First find the Schmidt decomposition for this bipartition.

3.11.4 Exercise 3.4: LOCC Impossibility

Explain intuitively why you cannot convert \(|\text{GHZ}_3\rangle\) to \(|W_3\rangle\) using only local operations and classical communication.

3.11.5 Exercise 3.5: Multipartite Correlation

Consider the state:

\[ |\psi\rangle = \frac{1}{2}(|000\rangle + |011\rangle + |101\rangle + |110\rangle) \]

(a) Is this state genuinely tripartite entangled? Check all bipartitions.

(b) Calculate the entanglement entropy for partition \(1|23\).

3.11.6 Exercise 3.6: Fragility vs Robustness

Design an experiment (in words) that demonstrates the difference in robustness between GHZ and W states when qubits are lost.

3.11.7 Exercise 3.7: n-Qubit Generalization

Generalize the formula for \(|W_n\rangle\) and prove that measuring \(k\) qubits (with all outcomes 0) leaves the remaining qubits in state \(|W_{n-k}\rangle\) (properly normalized).


Next: Part II: Measurement-Based Quantum Computing

Part I complete! You’re now ready to explore MBQC and QPL.